\qquad Class \qquad Date \qquad

7-6

Exponential Functions

Functions that can be modeled by an equation of the form $y=a \cdot b^{x}$ are exponential functions. These functions have properties that are different from the properties of linear and quadratic functions.

Definition

An exponential function is a function of the form $y=a \cdot b^{x}$, where $a \neq 0, b>0, b \neq 1$, and x is a real number.

Examples

Consider the three function tables below.

x	y
0	3
1	9
2	27
3	81
4	243
5	729

x	y
0	3
1	6
2	12
3	24
4	48
5	96

x	y
0	2
1	10
2	50
3	250
4	1250
5	6250

EXAMPLE

1. For each of the tables on the previous page, extend them two units in each direction. Use the common difference in the x-values and the common ratio in the y-values to do the extension. The first table is done for you.

x	\boldsymbol{y}
-2	$\frac{1}{3}$
-1	1
0	3
1	9
2	27
3	81
4	243
5	729
6	2187
7	6561

2. Plot the points in each of your extended tables on separate coordinate grids. Connect the points with a smooth curve. The domain of each function is all real numbers and that the range is all positive real numbers. Explain why there are negative values for x but not for y.
3. For each of the tables, identify the starting value a and the common ratio b. For the first table, a is 1 and b is 3 . Next, write the exponential function that describes each table. The function for the first table is $f(x)=1 \cdot 3 x$. Check if your function is correct by substituting in x-values and seeing if the function produces values for y that match the values in the table.

YOUR TURN

Determine whether each table or rule represents a linear or an exponential function. Explain.
2.

3. $y=5 \cdot 2^{x}$
4. $y=6 \cdot x^{3}$
5. $y=3 x-8$
6. $y=4 \cdot 0.3^{x}$

Evaluate each function for the given value.
7. $f(x)=5^{x}$ for $x=4$
8. $h(t)=3 \cdot 4^{t}$ for $t=-3$
9. $y=8 \cdot 0.7^{x}$ for $x=3$

Graph each exponential function.
10. $f(x)=3^{x}$
11. $y=0.25^{x}$
12. $y=8 \cdot 1.2^{x}$
13. What is the solution or solutions of $3^{x}=5 x$?
14. An investment of $\$ 8000$ in a certain Certificate of Deposit (CD) doubles in value every seven years. The function that models the growth of this investment is $f(x)=8000 \cdot 2^{x}$, where x is the number of doubling periods. If the investor does not withdraw any money from this CD , how much money will be available for withdrawal after 28 years?
15. A population of amoebas in a petri dish will triple in size every 20 minutes. At the start of an experiment the population is 800 . The function $y=800 \cdot 3^{x}$, where x is the number of 20 minute periods, models the population growth. How many amoebas are in the petri dish after 3 hours?
16. A new car costs $\$ 15,000$ to build in 2010 . The company's financial analysts expect costs to rise by 6% per year for the 10 years they are planning to build the car. The cost to build the car can be modeled by the function $f(t)=15,000(1.06)^{t}$, where t is the number of years after 2010. How much will it cost the company to build the car in 2017?

Evaluate each function over the domain $\{-2,-1,0,1,2,3\}$. As the values of the domain increase, do the values of the range increase or decrease?
17. $f(x)=3^{x}$
18. $y=4.2^{x}$

Which function has the greater value for the given value of x ?
23. $y=5^{x}$ or $y=x^{5}$ for $x=2$

Solve each equation.

25. $3^{x}=81$
26. $4^{x}+4=68$
27. Reasoning The function that models the growth of a $\$ 1000$ investment that earns 7% per year is $f(x)=1000(1.07)^{x}$. How do you think you would write a function that models the growth of $\$ 1500$ that earns 8% per year? Use that function to determine how much money a person would have after 5 years if she invested $\$ 1500$ in an account earning 8% per year.
28. Writing Discuss the differences between exponential functions with a base of 2 and $3, y=2^{x}$ and $y=3^{x}$, and quadratic and cubic functions $y=x^{2}$ and $y=x^{3}$. Focus on the shapes of the different graphs and rates of growth.
29. Open-Ended Find the value of each of the functions a) $f(x)=2 x^{2}$ and b) $f(x)=2 \cdot 2^{x}$ for $x=5$. Write another quadratic function and another exponential function with a base of two whose values at $x=5$ are between the values you found for functions a and b.
