$\qquad$ Class $\qquad$ Date $\qquad$

## 7-8

## Geometric Sequences

A geometric sequence is a sequence in which the ratio between consecutive terms is constant. This ratio is called the common ratio. Every geometric sequence has a starting value and a common ratio.

General form

## Key Concept Geometric Sequence

A geometric sequence with a starting value $a$ and a common ratio $r$ is a sequence of the form $a, a r, a r^{2}, a r^{3}, \ldots$

A recursive definition for the sequence has two parts:

$$
\begin{array}{ll}
a_{1}=a & \text { Initial condition } \\
a_{n}=a_{n-1} \cdot r, \text { for } n \geq 2 & \text { Recursive formula }
\end{array}
$$

An explicit definition for this sequence is a single formula:

$$
a_{n}=a_{1} \cdot r^{n-1} \text {, for } n \geq 1
$$

Every geometric sequence has a starting value and a common ratio. The starting value and common ratio define a unique geometric sequence.

## Problem

Is the following a geometric sequence? $1,2,4,8,16, \ldots$


Determine whether the sequence is a geometric sequence. Explain.

1. $5,10,20,40, \ldots$
2. $3,9,27,81, \ldots$
3. $-48,96,-192,384, \ldots$

Any geometric sequence can be defined by both an explicit and a recursive definition. The recursive definition is useful for finding the next term in the sequence.

$$
a_{1}=a ; a_{n}=a_{n-1} \cdot r
$$

In this formula,

- $a_{1}$ represents the first term
- $a_{n}$ represents the $n$th term
- $n$ represents the term number
- $r$ represents the common ratio
- $a_{n-1}$ represents the term immediately before the $n$th term


## Problem

What is a recursive formula for the geometric sequence $3,12,48,192,768, \ldots$ ?

## Write the recursive formula for each geometric sequence.

7. $5,25,125,625, \ldots$
8. $-2,6,-18,54, \ldots$
9. $96,72,54,40.5, \ldots$
10. $10,-10,10,-10, \ldots$

An explicit formula is more convenient when finding the $n$th term.

## Problem

What is an explicit formula for the geometric sequence $-\mathbf{2}, 2,-2,2, \ldots$ ?
$a_{n}=a_{1} \cdot r^{n-1} \quad$ Use the explicit definition for a geometric sequence.
$a_{n}=-2 \cdot(-1)^{n-1}$
Replace $a_{1}$ with -2 and $r$ with -1 .

Write the explicit formula for each geometric sequence.
11. $-3,3,-3,3, \ldots$
12. $1,0.5,0.25,0.125, \ldots$

Use the list below to complete the diagram.

- $a_{n}=a_{n-1} \cdot r, n \geq 2 \quad r i n a_{n}=a_{n-1} \cdot r, n \geq 2$
- sequence in which the ratio of any term to its preceding term is constant
- explicit definition for a sequence
- sequence in which the difference between every pair of consecutive terms is the same
- $a$ in $a_{n}=a_{n-1} \cdot r, n \geq 2$


Identify each sequence as arithmetic, geometric, or neither.
15. $1,6,11,16, \ldots$
16. $125,62.5,31.25,15.625 \ldots$
17. $1,5,10,16, \ldots$
18. $-5,5,-5,5, \ldots$
19. Biology A certain population of finches is decreasing by $6 \%$ every year. The current number of finches in the population is 456 . Write the explicit and recursive formulas for the geometric sequence formed by the decrease in the number of finches.
20. Compare and Contrast Explain how a geometric sequence and an arithmetic sequence are the same. How are they different?
21. A geometric sequence is represented by the function $f(x)=3 \cdot 2^{x-1}$. What is the initial value of the sequence and the common ratio? Find the first 4 terms of the sequence.

