Name: \qquad Date: \qquad

The Midpoint Formula Common Core Geometry

Midpoints will be important as we move forward in geometry. The first exercise reviews some of the basics about midpoints.

Exercise \#1: In the diagram below segment $\overline{C D}$ bisects $\overline{A B}$ at point M.
(a) Based on the information given, M is the midpoint of which of the two segments? Explain.
(b) Which two segments must have the same length based on the givens? Make a formal statement of congruence.

Midpoints have a special place in coordinate geometry as well as Euclidean geometry.
Exercise \#2: In the diagram shown, $\overline{M N}$ contains point P. Use the distance formula to prove that P is the midpoint of $\overline{M N}$.

$$
M(2,3), P(10,9), N(18,15)
$$

Exercise \#3: Given $M(2,3)$ and $N(18,15)$ from Exercise \#2, find the average of their x-coordinates and the average of their y-coordinates. What do you notice about these averages?

The Midpoint Formula

If $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ are the endpoints of a line segment, then the midpoint of that line segment is at:

$$
\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) \text { (the average) }
$$

Exercise \#4: For each set of coordinates, find the coordinates of the midpoint of the segment joining the two.
(a) $(-5,7)$ and $(9,15)$
(b) $(-8,12)$ and $(5,4)$

The midpoint formula is easy enough to use and should be understood from the perspective of averages. It can be helpful in many different contexts.

Exercise \#5: In the graph below, $\overline{A B}$ is drawn with endpoints at $A(-1,-3)$ and $B(3,7)$.
(a) Find the coordinates of its midpoint, M, and mark it on the graph.
(b) What is the slope of $\overline{A B}$? State in simplest form.
(c) Draw the perpendicular bisector of $\overline{A B}$ and state its equation.

(d) State one point, other than M, that the perpendicular bisector passes through. Mark this point as D on the graph. Draw $\overline{A D}$ and $\overline{B D}$ and find their lengths using the distance formula. What do you observe?

Coordinates of $D: \quad$ Length of $\overline{A D}: \quad$ Length of $\overline{B D}$:

Observation: \qquad
\qquad

The Midpoint Formula Common Core Geometry Homework

Problem Solving

1. For each pair of points below, find three quantities: the slope between the points, the midpoint between the points and the distance between the points. Show all calculations. Simplify all answers.
(a) $A(-4,-10)$ and $B(8,6)$
(b) $F(-1,3)$ and $G(9,-3)$

Slope:

Midpoint:

Distance:
Distance:
2. If two points, R and T, have coordinates of $R(-5,8)$ and $T(3,14)$, then which of the following points lies at the midpoint of $\overline{R T}$?
(1) $(-2,22)$
(3) $(-1,11)$
(2) $(-5,14)$
(4) $(2,11)$
3. Which of the following would be true about the perpendicular bisector of the line segment whose endpoints are $E(-3,2)$ and $F(9,10)$?
(1) It would have a slope of $\frac{2}{3}$ and pass through the point $(3,6)$.
(2) It would have a slope of $\frac{2}{3}$ and pass through the point $(6,12)$.
(3) It would have a slope of $-\frac{3}{2}$ and pass through the point $(6,12)$.
(4) It would have a slope of $-\frac{3}{2}$ and pass through the point $(3,6)$.
4. In the following diagram, $\triangle A B C$ is drawn with coordinates at $A(-4,8), B(-2,-2)$ and $C(6,4)$.
(a) Find the midpoints of $\overline{A B}$ and $\overline{A C}$ and label them D and E respectively.

Midpoint of $\overline{A B}$: (point D)

Midpoint of $\overline{A C}$:
(point E)
(b) Draw segment $\overline{D E}$ on the graph and find its slope and length. Show your calculations below.

Slope of $\overline{D E}$:
Length of $\overline{D E}$:
(c) Find the slope and the length of line segment $\overline{B C}$. Show your calculations below.

Slope of $\overline{B C}$: Length of $\overline{B C}$:
(d) Give at least two observations you can make based on your answers to (b) and (c).
5. Determine the equation of the perpendicular bisector $\overline{J K}$ whose endpoints are $J(-4,9)$ and $K(6,1)$. Show all your work below. (Use of the grid is optional.)

